Reversibility of strain stiffening in silk fibroin gels.

نویسندگان

  • Zeynep Oztoprak
  • Oguz Okay
چکیده

We investigate the linear and nonlinear viscoelastic properties as well as the reversibility of strain-stiffening behavior of silk fibroin gels. The gels are prepared from 4.2w/v% fibroin solution in the presence of butanediol diglycidyl ether and N,N,N',N'-tetramethylethylenediamine (TEMED) as a cross-linker and catalyst, respectively. By changing the concentration of TEMED in the gelation system, fibroin gels exhibiting a storage modulus G' between 10-1-105Pa and a loss factor tan δ between 10-2 and 10° could be obtained. We observe a strong stiffening (up to 900%) in fibroin gels with increasing strain above 10% deformation, but reversibly if the strain is removed, the gel recovers its initial viscoelastic properties. The strain induced formation of transient intermolecular domains acting as reversible cross-links are responsible for the stiffening behavior of fibroin gels. These additional cross-links formed in the hardened fibroin gels have a temporary nature with lifetimes of the order of seconds. The nonlinear behavior of fibroin gels can be reproduced by a wormlike chain model taking into account the entropic elasticity of fibroin molecules and the strain induced increase in the cross-link density of fibroin gels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-equilibrium silk fibroin adhesives.

Regenerated silkworm silk solutions formed metastable, soft-solid-like materials (e-gels) under weak electric fields, displaying interesting mechanical characteristics such as dynamic adhesion and strain stiffening. Raman spectroscopy, in situ electric field dynamic oscillatory rheology and polarized optical microscopy indicated that silk fibroin electrogelation involved intermolecular self-ass...

متن کامل

The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn., - a review

The domesticated silkworm, Bombyx mori Linn., a lepidopteran molecular model and an important economic insect that are emerging as an ideal molecular genetic resource for solving a broad range of biological problems. The silkworm, B. mori produces massive amount of silk proteins during the final stage of larval development. These proteins are stored in the middle silk gland and they are dischar...

متن کامل

Rheology of reconstituted silk fibroin protein gels: the epitome of extreme mechanics.

In nature, silk fibroin proteins assemble into hierarchical structures with dramatic mechanical properties. With the hope of creating new classes of on demand silk-based biomaterials, Bombyx mori silk is reconstituted back into stable aqueous solutions that can be reassembled into functionalized materials; one strategy for reassembly is electrogelation. Electrogels (e-gels) are particularly ver...

متن کامل

Induction of Mineralized Nodule Formation in Rat Bone Marrow Stromal Cell Cultures by Silk Fibroin

Background: Silk fibroin is a suitable protein for osteogenesis by inducing markers of bone formation in the cultures of osteoblasts, so we examined the ability of this protein to induce mineralized nodules in the rat bone marrow stromal cell cultures. Methods: Bone marrow stromal cells obtained from 4 to 6 weeks old Spruge-Dawely male rats were grown in primary culture for seven days and then ...

متن کامل

In vitro behavior of silk fibroin-coated calcium magnesium silicate scaffolds

Bioceramic scaffolds such as silicate bioceramics have been widely used for bone tissue engineering. However, their high degradation rate, low mechanical strength and surface instability are main challenges compromising their bioactivity and cytocompatibility which further negatively affect the cell growth and attachment. In this study, we have investigated the effects of silk fibroin coating o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of biological macromolecules

دوره 95  شماره 

صفحات  -

تاریخ انتشار 2017